HATRA 2023

Goals of the Luau Type System, Two Years On
Lily Brown, Andy Friesen, and Alan Jeffrey

RQBLOX

Table of Contents

RABLOX

Recap: HATRA 2021
Progress: semantic subtyping
Progress: gradual typing

Future work

Goals of the Luau Type System, Two Years On | p

Recap: HATRA 2021

RABLOX

Position Paper: Goals of the Luau Type System

LILY BROWN, ANDY FRIESEN, and ALAN JEFFREY, Roblox, USA

Luau is the scripting language that powers user-generated experiences on the Roblox platform. It is a statically-
typed language, based on the dynamically-typed Lua language, with type inference. These types are used
for providing editor assistance in Roblox Studio, the IDE for authoring Roblox experiences. Due to Roblox’s
uniquely heterogeneous developer community, Luau must operate in a somewhat different fashion than a
traditional statically-typed language. In this paper, we describe some of the goals of the Luau type system,
focusing on where the goals differ from those of other type systems.

ACM Reference Format:

Lily Brown, Andy Friesen, and Alan Jeffrey. 2021. Position Paper: Goals of the Luau Type System. In HATRA
’21: Human Aspects of Types and Reasoning Assistants. ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
The Roblox platform allows anyone to create shared, immersive, 3D experiences. As of July 2021,
there are approximately 20 million experiences available on Roblox, created by 8 million devel-
opers [19]. Roblox creators are often young: there are over 200 Roblox kids’ coding camps in
65 countries listed by the company as education resources [18]. The Luau programming lan-
guage [17] is the scripting language used by creators of Roblox experiences. Luau is derived from
the Lua programming language [7], with additional capabilities, including a type inference engine.
This paper will discuss some of the goals of the Luau type system, such as supporting goal-driven

https://asaj.org/papers/hatra21.pdf

What is Roblox?
Roblox is not a games company!

ROQBLOX Goals of the Luau Type System, Two Years On | 4

What is Roblox?
Roblox is a platform for shared virtual experiences

RHBLOX Goals of the Luau Type System, Two Years On | 5

What is Roblox?

Roblox is a platform for shared virtual experiences

Roblox provides
Physics engine
Rendering pipeline

Multimedia Creators provide
Distribution Creativity
Creation tools .
X-platform clients DeS|gr.1
Programmability Storytelling
Trust & safety Music
Security
Community Laughter
Economy Thrills
Avatars

Digital matter

ROQBLOX Goals of the Luau Type System, Two Years On | 6

https://emojipedia.org/smiling-face-with-sunglasses/

Who are Roblox creators?
Very heterogeneous creator community

Developer and Creater Breakdown
® M 0] St Crea tO rs by Rewards Experiences Breakdown by Hours

(measured by $) Rewards 8 —
are professional devs
e Most creators
(measured by people) e om0k
are kids having fun
e Both are important!

! Represents post Developer exchange fees earnings in trailing twelve months as of * Represents experiences in trailing twelve months as of
December 31,2022 December 31,2022

https://ir.roblox.com/financials/annual-reports/
ROQBLOX Goals of the Luau Type System, Two Years On | 7

https://ir.roblox.com/financials/annual-reports/

Who are Roblox creators?
Different creators have different needs

e Professional developers have code quality goals
e Beginning creators have immediate goals
e For both, type-driven productivity tools (autocomplete, APl docs, ...) are important

ROQBLOX Goals of the Luau Type System, Two Years On | 8

Technical impact of heterogeneous creator community
Correlation of run-time errors and static type errors

Predicting run-time errors is undecidable, so you have a design decision:

e Sound systems have no false negatives: if a program type-checks, then it has no
run-time errors

e Complete systems have no false positives: if a program has a type error, then it
has a run-time error

Traditional POPL-style type systems are sound, complete systems do exist
(incorrectness logic, Elixir, ...) but are rarer.

Luau supports both via strict mode and non-strict mode.

RABLOX

Goals of the Luau Type System, Two Years On | 9

Progress: semantic subtyping

RHBLOX Goals of the Luau Type System, Two Years On | 10

What is semantic subtyping?
Subtyping “the way you first think it works”

e Types are interpreted as sets of values
e Subtyping is interpreted as subset inclusion

D'ohl!

ROQBLOX Goals of the Luau Type System, Two Years On | 11

What is semantic subtyping?
Not quite as easy as you might think

close the circle. The algorithm to compute the subtyping relation,

however, does depend on the choice of the model. The model % is
ret 1 chai, 1

Giuseppe Castagna
CNRS

Ecole Normale Supérieure
Paris, France

ABSTRACT

Subtyping relations are usually defined either syntactically by a for-
mal system or semantically by an interpretation of types into an un-
typed denotational model. In this work we show step by step how
to define a subtyping relation semantically in the presence of func-
tional types and dynamic dispatch on types, without the complex-
ity of denotational models, and how to derive a complete subtyping
algorithm. It also provides a recipe to add set-theoretic union, in-
tersection, and negation types to your favourite language.

The presentation is voluntarily kept informal and discursive and
the technical details are reduced to a minimum since we rather in-
sist on the motivations, the intuition, and the guidelines to apply the
approach.

Categories and Subject Descriptors: D.3.3 [Programming Lan-

guages]: Language Constructs and Features — Data types and struc-
ture; F.3.3 [Logics and Meanings of Programs]: Studies of Program

Constructs — Type structure; F.4.1 [Mathematical Logic and For-

mal Languages]: Mathematical Logic — Lambda calculus and re-

lated systems

General Terms: Language, Theory.

Keywords: Typing; Subtyping; Intersection, Union, and Negation

Types.

A Gentle Introduction to Semantic Subtyping

Alain Frisch
INRIA
Rocquencourt
France

in which types can be interpreted as subsets of a model may be a
hard task. A solution to this problem was given by Haruo Hosoya
and Benjamin Pierce [18, 17, 16] with the work on XDuce. The key
idea is that in order to define the subtyping relation semantically
one does not need to start from a model of the whole language: a
model of the types suffices. In particular Hosoya and Pierce take
as model of types the set of values of the language. Their notion
of model cannot capture functional values. On the one hand, the
resulting type system is poor since it lacks function types. On the
other hand, it manages to integrate union, product and recursive
types and still keep the presentation of the subtyping relation and
of the whole type system quite simple.

In [12, 11], together with Véronique Benzaken, we extended the
work on XDuce and reframed it in a more general setting: we show
a technique to define semantic subtyping in the presence of a rich
type system including function types, but also arbitrary boolean
combinations (union, intersection, and negation types) and in the
presence of lately bound overloaded functions and type-based pat-
tern matching. The aim of [12, 11] was to provide a theoretical
foundation on the top of which to build the language CDuce [6], an
XML-oriented transformation language. This motivation needed
a rather heavy technical development that concealed a side—but
important—contribution of the work, namely a generic and uni-
form technique (or rather, a cookbook of techniques) to define se-

it is universal, in the sense that it induces
ping relation; formally, for every model

b = Hh<yqh

00 poor a structure to be used as the target
is programming language, as it cannot ex-
Nevertheless it is enough for interpreting
tterising type containment).

ntation and subtyping

mantically defined subtyping relation the
f an effective way to check whether two

relation. In order to define the subtyping
Leasier to work with types that are written
ng a canonical form is not very hard since
semantic interpretation of types. So let us
that can be seen as the set of regular trees

=t | txt | ot | tVe | tAt

row type £ — ¢ or a product type £ X 1. A
nal form if and only if it is a finite union
toms or their negations (in the latter case
ns). For instance:

14 A=as)V (mag A—az)V (ag Aag)

2 identify 0 with the empty union and 1
m).
and ¢ are equivalent if they have the same
= [¢]) and we denote it by s ~ ¢. Every
uivalent to a type in disjunctive normal
loss of generality we can consider this
1 of types we work on.
ur representation by noting that if the in-
ms with different constructors, then they
to a unique type according to the polari-
7: so for instance (s X #1) A (s2 = 1) =~ 0
) 251 X t;. Therefore we only consider
1 atoms of the same sort (that is, that do
v types), e.g. :

IA(syx 1) A(s3 % 13))
<,

({(s1xt1),(s2x 2)}, {(s3 X 13)}). Therefore every packet can be
represented by a set S of such pairs, under the following form:

v (</\aw/\~a))

(PN)eS \ acP aeN

Thus two of such sets are all we need to represent every type. For
instance our previous type is represented by the pair

({{€Cpten G, oD (0 (samst) s i9)

It is interesting to notice that this is not just a theoretical represen-
tation but it is also the representation we used in early versions of
the CDuce interpreter (the current implementation is using more
efficient partial decision trees).

But let us go back to our problem, which is the one of defining
algorithms that verify whether two types s and # are in the subtyping
relation. The key observation for what follows is again that the
problem of deciding whether two types are in subtyping relation
can be reduced to the problem of deciding whether a type is empty.
Recall

s<t=[lCl] = [BIn=92 < [A~]=2.
Since @ = [0] then
s<t <= sA-t~0
Since every type can be represented as the union of addenda of
uniform sort and a union is empty only if all its addenda are empty,

then in order to decide the emptiness of every type it suffices to
establish when the terms

A=(A A\ -a)
acP aeN

are empty for P and N formed by types of the same sort (all prod-
ucts or all arrows). Or equivalently this results to deciding

(Aa<(Va
acP aeN

that is, we must be able to decide whether

(A sxOA(A\ =(sxt))
SXteP sxteN
and
(As=OA(A\ =(s—1) 3)
s—eP s—teN

are equivalent to 0. So the algorithm must decompose this problem

https://www.irif.fr/~gc/papers/icalp-ppdp05.pdf

Why semantic subtyping?
Minimizing false positives

c & blog.roblox.com/2022/11/semantic-subtyping-luau/

RnBLox About Play

One of the sources of false positives in Luau (and many other similar languages like TypeScript or Flow) is subtyping.
Subtyping is used whenever a variable is initialized or assigned to, and whenever a function is called: the type system

checks that the type of the expression is a subtype of the type of the variable. For example, if we add types to the

Horrible mess of overloaded [euspssmmm"
functions and union types,
resulting in a false positive. local x : CFrame = CFrame.new ()

local y : Vector3 | CFrame

if math.random() < 0.5 then
y = CFrame.new()

else
y = Vector3.new()

end

local z : Vector3 | CFrame = x * y

then the type system checks that the type of cFrame multiplication is a subtype of

(CFrame, Vector3 | CFrame) -> (Vector3 | CFrame)

RABLOX

Subtyping is a very useful feature, and it supports rich type constructs like type union (T | U) and intersection (

Implementation
Not subtyping the way you first think it works

e First, try syntactic subtyping, if that succeeds, then yay!
e If not, perform type normalization (with possible exponential blowup due to CNF)
e Semantic and syntactic subtyping coincide on normalized types.

Lots of devils in the details.

ROQBLOX Goals of the Luau Type System, Two Years On | 14

Progress: gradual typing

RHBLOX Goals of the Luau Type System, Two Years On | 15

Traditional gradual types
Compatible types (aka what we used to do)

e Add a type any, allow it to be used wherever
e Define “compatibility”, in particular T ~ any ~ U
e Use compatible typing everywhere, e.g.if f: Fand x: Tand F~ T - Uthen f(x) : U

Easy to get wrong, since ~ isn’t transitive.

RHBLOX Goals of the Luau Type System, Two Years On | 16

Error suppression
Treat type warnings constructively (aka what we do now)

e Give every term-in-context a type typeof(I,M),
e.g. typeof(l, f(x)) is apply(typeof(l,f), typeof(l,x)).
e Define which typings generate type warnings,
e.g. function application generates a warning when
typeof(x) £: src(typeof(f)), and there are no error-suppressing types!
e Needsapply(T> U, V)is U, src(T - U)is T, and any is error-suppressing.

ROQBLOX Goals of the Luau Type System, Two Years On | 17

Error suppression
Constructive formulation of type soundness for strict mode

Two readings:

e constructive statement of “well typed programs don’t go wrong”
e run a program, if it produces a run-time error, then run it back in time (!) and find a
root cause type warning

Time travel debugging for type systems!

wellTypedProgramsDontGoWrong : YV H" B B” - (e" + B —%x B” 4 H") -» (RuntimeError® H” B’) - Warning® @" (typeCheck® o" @ B)
wellTypedProgramsDontGoWrong H” B B’ err with reflectx @" B t (runtimeWarning® H” B’ err)

wellTypedProgramsDontGoWrong H” B B’ err | heap (addr a refl ())
wellTypedProgramsDontGoWrong H” B B’ err | ctxt (UnsafeVar x () p)
wellTypedProgramsDonthWrong H” B B’ err | block W =W

RHBLOX Goals of the Luau Type System, Two Years On | 18

Future work

RHBLOX Goals of the Luau Type System, Two Years On | 19

Future work
Drawing more owls

e Flesh out non-strict mode
e Treat non-strict mode as “strict mode, but with more error suppression”
e Actually ship

RHBLOX Goals of the Luau Type System, Two Years On | 20

Thank you!

ROQBLOX Goals of the Luau Type System, Two Years On | 21

