
Goals of the Luau Type System, Two Years On
HATRA 2023

Lily Brown, Andy Friesen, and Alan Jeffrey



2

Table of Contents

1. Recap: HATRA 2021

2. Progress: semantic subtyping

3. Progress: gradual typing

4. Future work

Goals of the Luau Type System, Two Years On | 2



Goals of the Luau Type System, Two Years On | 3

Recap: HATRA 2021

https://asaj.org/papers/hatra21.pdf

https://asaj.org/papers/hatra21.pdf


Goals of the Luau Type System, Two Years On | 4

What is Roblox?
Roblox is not a games company!



Goals of the Luau Type System, Two Years On | 5

What is Roblox?
Roblox is a platform for shared virtual experiences



6

What is Roblox?
Roblox is a platform for shared virtual experiences

Goals of the Luau Type System, Two Years On | 6

Roblox provides
Physics engine

Rendering pipeline
Multimedia
Distribution

Creation tools
X-platform clients
Programmability

Trust & safety
Security

Community
Economy
Avatars

Digital matter
…

Creators provide
Creativity

Design
Storytelling

Music
Laughter

Thrills
…

Boring 😴

😎 Fun

https://emojipedia.org/smiling-face-with-sunglasses/


7

Who are Roblox creators?
Very heterogeneous creator community

Goals of the Luau Type System, Two Years On | 7

● Most creators
(measured by $)
are professional devs

● Most creators
(measured by people)
are kids having fun

● Both are important!

https://ir.roblox.com/financials/annual-reports/ 

https://ir.roblox.com/financials/annual-reports/


8

Who are Roblox creators?
Different creators have different needs

Goals of the Luau Type System, Two Years On | 8

● Professional developers have code quality goals
● Beginning creators have immediate goals
● For both, type-driven productivity tools (autocomplete, API docs, …) are important



9

Technical impact of heterogeneous creator community
Correlation of run-time errors and static type errors

Goals of the Luau Type System, Two Years On | 9

Predicting run-time errors is undecidable, so you have a design decision:

● Sound systems have no false negatives: if a program type-checks, then it has no 
run-time errors

● Complete systems have no false positives: if a program has a type error, then it 
has a run-time error

Traditional POPL-style type systems are sound, complete systems do exist 
(incorrectness logic, Elixir, …) but are rarer.

Luau supports both via strict mode and non-strict mode.



Goals of the Luau Type System, Two Years On | 10

Progress: semantic subtyping



11

What is semantic subtyping?
Subtyping “the way you first think it works”

Goals of the Luau Type System, Two Years On | 11

● Types are interpreted as sets of values
● Subtyping is interpreted as subset inclusion

D’oh!



12

What is semantic subtyping?
Not quite as easy as you might think

Goals of the Luau Type System, Two Years On | 12

https://www.irif.fr/~gc/papers/icalp-ppdp05.pdf 

https://www.irif.fr/~gc/papers/icalp-ppdp05.pdf


13

Why semantic subtyping?
Minimizing false positives

Goals of the Luau Type System, Two Years On | 13

Horrible mess of overloaded 
functions and union types,
resulting in a false positive.



14

Implementation
Not subtyping the way you first think it works

Goals of the Luau Type System, Two Years On | 14

● First, try syntactic subtyping, if that succeeds, then yay!
● If not, perform type normalization (with possible exponential blowup due to CNF)
● Semantic and syntactic subtyping coincide on normalized types.

Lots of devils in the details. 



Goals of the Luau Type System, Two Years On | 15

Progress: gradual typing



16

Traditional gradual types
Compatible types (aka what we used to do)

Goals of the Luau Type System, Two Years On | 16

● Add a type any, allow it to be used wherever
● Define “compatibility”, in particular T ~ any ~ U
● Use compatible typing everywhere, e.g. if f : F and x : T and F ~ T → U then f(x) : U

Easy to get wrong, since ~ isn’t transitive. 



17

Error suppression
Treat type warnings constructively (aka what we do now)

Goals of the Luau Type System, Two Years On | 17

● Give every term-in-context a type typeof(Γ,M), 
e.g. typeof(Γ, f(x)) is apply(typeof(Γ,f), typeof(Γ,x)).

● Define which typings generate type warnings,
e.g. function application generates a warning when
typeof(x) ≮: src(typeof(f)), and there are no error-suppressing types!

● Needs apply(T → U, V) is U, src(T → U) is T, and any is error-suppressing.



18

Error suppression
Constructive formulation of type soundness for strict mode

Goals of the Luau Type System, Two Years On | 18

Two readings: 

● constructive statement of “well typed programs don’t go wrong”
● run a program, if it produces a run-time error, then run it back in time (!) and find a 

root cause type warning

Time travel debugging for type systems!



Goals of the Luau Type System, Two Years On | 19

Future work



20

Future work
Drawing more owls

Goals of the Luau Type System, Two Years On | 20

● Flesh out non-strict mode
● Treat non-strict mode as “strict mode, but with more error suppression”
● Actually ship



Goals of the Luau Type System, Two Years On | 21

Thank you!


