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Recap: HATRA 2021

https://asaj.org/papers/hatra21.pdf

https://asaj.org/papers/hatra21.pdf
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What is Roblox?
Roblox is not a games company!
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What is Roblox?
Roblox is a platform for shared virtual experiences
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What is Roblox?
Roblox is a platform for shared virtual experiences
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Roblox provides
Physics engine

Rendering pipeline
Multimedia
Distribution

Creation tools
X-platform clients
Programmability

Trust & safety
Security

Community
Economy
Avatars

Digital matter
…

Creators provide
Creativity

Design
Storytelling

Music
Laughter

Thrills
…

Boring 😴

😎 Fun

https://emojipedia.org/smiling-face-with-sunglasses/
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Who are Roblox creators?
Very heterogeneous creator community

Goals of the Luau Type System, Two Years On | 7

● Most creators
(measured by $)
are professional devs

● Most creators
(measured by people)
are kids having fun

● Both are important!

https://ir.roblox.com/financials/annual-reports/ 

https://ir.roblox.com/financials/annual-reports/
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Who are Roblox creators?
Different creators have different needs
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● Professional developers have code quality goals
● Beginning creators have immediate goals
● For both, type-driven productivity tools (autocomplete, API docs, …) are important
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Technical impact of heterogeneous creator community
Correlation of run-time errors and static type errors
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Predicting run-time errors is undecidable, so you have a design decision:

● Sound systems have no false negatives: if a program type-checks, then it has no 
run-time errors

● Complete systems have no false positives: if a program has a type error, then it 
has a run-time error

Traditional POPL-style type systems are sound, complete systems do exist 
(incorrectness logic, Elixir, …) but are rarer.

Luau supports both via strict mode and non-strict mode.
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Progress: semantic subtyping
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What is semantic subtyping?
Subtyping “the way you first think it works”
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● Types are interpreted as sets of values
● Subtyping is interpreted as subset inclusion

D’oh!
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What is semantic subtyping?
Not quite as easy as you might think
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https://www.irif.fr/~gc/papers/icalp-ppdp05.pdf 

https://www.irif.fr/~gc/papers/icalp-ppdp05.pdf
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Why semantic subtyping?
Minimizing false positives
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Horrible mess of overloaded 
functions and union types,
resulting in a false positive.
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Implementation
Not subtyping the way you first think it works
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● First, try syntactic subtyping, if that succeeds, then yay!
● If not, perform type normalization (with possible exponential blowup due to CNF)
● Semantic and syntactic subtyping coincide on normalized types.

Lots of devils in the details. 
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Progress: gradual typing
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Traditional gradual types
Compatible types (aka what we used to do)
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● Add a type any, allow it to be used wherever
● Define “compatibility”, in particular T ~ any ~ U
● Use compatible typing everywhere, e.g. if f : F and x : T and F ~ T → U then f(x) : U

Easy to get wrong, since ~ isn’t transitive. 
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Error suppression
Treat type warnings constructively (aka what we do now)
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● Give every term-in-context a type typeof(Γ,M), 
e.g. typeof(Γ, f(x)) is apply(typeof(Γ,f), typeof(Γ,x)).

● Define which typings generate type warnings,
e.g. function application generates a warning when
typeof(x) ≮: src(typeof(f)), and there are no error-suppressing types!

● Needs apply(T → U, V) is U, src(T → U) is T, and any is error-suppressing.
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Error suppression
Constructive formulation of type soundness for strict mode
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Two readings: 

● constructive statement of “well typed programs don’t go wrong”
● run a program, if it produces a run-time error, then run it back in time (!) and find a 

root cause type warning

Time travel debugging for type systems!
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Future work
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Future work
Drawing more owls
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● Flesh out non-strict mode
● Treat non-strict mode as “strict mode, but with more error suppression”
● Actually ship
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Thank you!


